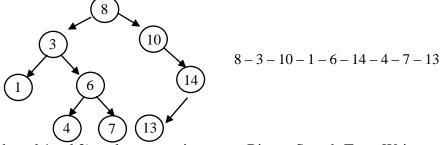
RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)	
SECOND YEAR [2014-17] B.A./B.Sc. THIRD SEMESTER (July – December) 2015 Mid-Semester Examination, September 2015	
Date : 14/09/2015 COMPUTER SCIENCE (Honours)	
Time : 11 am - 1 pm Paper : III	Full Marks : 50
[Use a separate answer book for each group]	
<u>Group – A</u>	
 Explain with example (<u>any two</u>): a) Lexicographic order b) Complemented Lattice c) Bijective function 	[2×2·5]
Answer any one question :	[1×10]
 2. a) Prove or disprove (A-B)×C=(A×C)-(B×C), A, B, C are three non-empty sets. b) Let A be some fixed 10-element subset of {1,2,3,, 50} Show that A possesses two differences of the subset, the sums of whose element are equal. 	[3]
c) Find the recurrence relation and initial condition to find the number of n-bit valid codew decimal digits, where valid codeword represents the number with even number of zero(0)	
3. a) Let x be a real number, show that $ \underline{2x} = \underline{x} + \underline{x} + \underline{y}_2 $	[2]
 b) How many relations on a set with n elements are (i) symmetric? (ii) reflexive and symmetric c) Check whether the poset (Z⁺, /) is a lattice or not. 	etric? [5] [3]
Answer any one of the following :	[1×10]
4. a) What is the difference between "maximum path" and "maximal path" in a graph?b) Prove that maximum number of edges in graph G with n vertices and k components.	[2] ents is
$\frac{(n-k)(n-k+1)}{2}.$	[3]
c) Define graph isomorphism with example.	[2]
d) Prove that every simple graph with n vertices $(n \ge 2)$ has at least two vertices of equal deg	gree. [3]
5. a) Prove that a connected graph G is Eulerian if and only if every vertex has even degree.b) Find the maximum number of edges in a bipartite graph with n vertices.	[3] [2]
c) A simple graph G has degree sequence (d ₁ , d ₂ ,, d _n). What is the degree sequence complement graph of G?	of the [2]
d) Prove that if G is a simple graph in which every vertex has degree at least k, then G corpath of length at least k. If $k \ge 2$ then G also contains a cycle of length at least k+1.	tains a [3]
<u>Group – B</u>	
Answer any one from the following :	[1×10]
 6. a) "Inline functions can only be defined within the class" —Justify. b) What do you mean by Embedded object? Why should we use this? 	[2]
b) What do you mean by Embedded object? Why should we use this?c) Is it possible to call a constructor from another constructor of the same class? If no suggest a technique to combine two constructors of the same class into one single constructor	
d) If we use 'friend' keyword, does it violate the 'Encapsulation' Property? Justify.	[2]
7. a) What do you mean by "name mangling"?b) What do you mean by virtual base class? How can it be used to solve ambiguity p	[2]
c) What do you mean by pseudo constructor?	[3] [2]
(1)	

d) Find the output of the following code : Class A


```
{
        int x;
              Public :
                     A()
                     {
                      ł
        A (int i)
         {
              \mathbf{x} = \mathbf{i}
         }
   };
Class B
   {
        int y, z:
              Public :
                     B()
                     {
         B (int i, int j)
         ł
              y = i;
              z = j;
         }
         void add (A
                           a)
         {
              B b1;
              b1.z = a.x + y;
              cout << b1.z ;</pre>
         }
    };
int main ()
   {
         A ob(5);
        B ob1 (4, 6);
        ob1. add (ob);
        return 0;
    }
```

Answer **any three** of the following :

[3×5]

[5]

- 8. Write an algorithm to find all the leafs of a given binary tree. The only input is the root of the tree. [5]9. For the following binary tree, the spiral traversal is :
- 9. For the following binary tree, the spiral traversal is : Given the root of a binary tree, write an algorithm to do a spiral traversal of the binary tree.

- 10. Given two values k1 and k2 (where k1 < k2) and a root pointer to a Binary Search Tree. Write an algorithm to print all the keys of the tree in range k1 to k2. i.e print all x such that k1 < x < k2. Efficient algorithm will be given extra credit.
- 11. Write an algorithm to check whether a binary tree is a binary search tree or not.

[5] [5]

- x ·